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Abstract. The equation of motion for nonequilibrium Green functions is derived within the
framework of the Schwinger and Keldysh formalism of perturbation expansion. For nonequilibrium
distribution Green functions, the equation of motion derived from quantum mechanics contains
undefined singularities, whose explicit form depends on the specific initial or boundary condition.
In the present work, the exact expression of singular terms is found in the equation of motion from
the time-looped perturbation theory in which the adiabatic initial condition is implied. Unlike
the usual Dyson perturbation formalism or the well known Kadanoff–Baym equation of motion,
our resulting equation can be adopted directly for calculations without the graphical analysis,
which depends on the specific form of the Hamiltonian. On the basis of this equation of motion,
the procedure of a nonperturbative solution is outlined and potential applications are briefly
discussed.

1. Introduction

The Green function (GF) technique has long been regarded as a powerful tool for the treatment
of many-body systems in equilibrium. At finite temperatures, the initial state is no longer the
ground state, and the final state is not well defined due to possible transitions to various excited
states [1, 2]. If the initial state isφ0(t = −∞), then the eigenstate becomesψ = S(0,−∞)φ0

by switching on the interaction adiabatically for a long time. It is therefore difficult to define
the state at a later timet = τ at finite temperatures. In dealing with such complications,
Schwinger [3] introduced the time-loop technique to handle theS-matrix S(−∞,+∞) by
breaking up the time integration to two stages, namely, from−∞ to τ and fromτ to−∞, and
then lettingτ → +∞. Thus, Schwinger’s time loop technique allows one to start and end the
S-matrix expansion with a well defined stateφ0.

Because the time-loop technique does not depend on the statistical ensemble, it should
be useful in dealing with nonequilibrium systems. This was carried out by Keldysh [4] who
developed the GF formalism to treat nonequilibrium problems on the basis of Schwinger’s
method. The Green functions developed in this theory are known as either the nonequilibrium
GF [5–8] or the time-looped GF [1]. The purpose of this paper is to derive an equation of
motion (EOM) which determines directly the nonequilibrium distribution GF. We remark
that the physical quantity can be calculated from the retarded GF alone in equilibrium
case.
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In general the transport phenomena occur only in nonequilibrium systems and hence,
strictly speaking, cannot be handled by the ordinary equilibrium GF. The equilibrium GF may
be applied to systems involving only linear responses. To treat quantum transport problems with
strong interactions in mesoscopic systems, on the other hand, the nonequilibrium formalism of
Keldysh [4] is perhaps one of the most general approaches [9–18]. In fact, the nonequilibrium
GF has been employed in recent years to study a variety of problems beyond the linear
response regime. Furthermore, the theory is also applied to discuss the dynamic behaviour of
systems, for example, the nonequilibrium screening in a three-dimensional electron gas [6, 7],
and photoabsorption in a two-dimensional electron gas under time-dependent electric fields
[19].

The perturbation expansion and graph technique has been well developed for the
nonequilibrium GF [4, 20]. The equation of motion (EOM) for the nonequilibrium GF has
also been developed by analytic continuation from the imaginary to the real time domain
[21]. However, it has been recognized that the two approaches are equivalent and lead to the
same nonequilibrium Dyson equation [20]. More recently, the nonequilibrium GF has been
generalized to include an arbitrary initial density matrix [22], and a general rule of graphic
expansion has been given for nonequilibrium processes by the path-integral technique [23]. It
may be of some interest just to mention in passing that the method of Legendre transformation
can reduce a huge number of degrees of freedom to a small number of coordinates and is
therefore able to handle macroscopic nonequilibrium systems [24].

On the other hand, the EOM for the nonequilibrium GF can be derived from the Heisenberg
equation although the singular terms remain undefined. In the Kadanoff–Baym EOM, a specific
self-energy term must be constructed for a given Hamiltonian so that the singular behaviour can
be handled. In fact, the quantum Boltzmann equation is derived this way [20]. For practical
calculations, however, the singular term may be avoided by introducing phenomenologically
a decay rate and allowing the system to interact with an external reservoir. The procedure is
similar to the quasi-equilibrium approximation in calculations of semiconductor quantum well
lasers [25]. To our knowledge, there does not exist ageneralexpression for this singular term
in the literature.

Mathematically, the undefined singular terms have their origin in the undefined initial
conditions. Thus, the general EOM for the nonequilibrium GF cannot be determined by
quantum mechanics alone. This is because different nonequilibrium statistical ensembles may
imply different initial conditions [22] and hence correspond to different expressions of the
singular term, which behaves like aδ-function inhomogeneity. We derive, in the present work,
the EOM for the nonequilibrium GF from the Schwinger–Keldysh perturbation formalism.
The singular term is expressed in a well defined general form, and is consistent with the
initial condition that the interaction is switched on adiabatically as implied in the time-looped
perturbation theory. However, it is not impossible that the form of the singular function may
change when different initial conditions are assumed.

This paper is organized as follows. In section 2, the time-looped Green function is very
briefly reviewed. The EOM for the nonequilibrium GF is derived from the Heisenberg equation
of motion in section 3. It is shown that the singular term introduced in the distribution
GF is still undefined. In section 4, we derive the EOM for nonequilibrium GFs with the
singular term expressed explicitly in a well defined general form. This is in contrast to the
nonequilibrium Dyson equation, in which the self-energy terms are treated by graphic methods,
depending on the specific Hamiltonian. The EOM can then be solved self-consistently with the
decoupling procedure similar to what is known in the equilibrium cases. It is emphasized that
all interactions are treated dynamically in this approach without introducing other parameters
phenomenologically. In conclusion, we discuss a few remarks in section 5.
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2. Nonequilibrium Green functions

The Green function is defined in the Heisenberg picture by

i〈〈A(ta), B(tb)〉〉 = tr{ρT [A(ta)B(tb)]} (1)

whereρ is the density matrix andT denotes the time-ordering operator. The explicit form of the
density operatorρ may not be specified but we assume that it will be evolved att = −∞ from
theρ0 which involves only single particle operators. With the help of a time-loop procedure,
we can express at finite temperatures the Green function as

i〈〈A(ta), B(tb)〉〉 = tr{ρ0T [A(ta)B(tb)Sc]} (2a)

whereρ0 stands for the density matrix of the initially noninteracting system, the subscriptc

indicates the time loop and the time-loopS-matrix is defined by

Sc = Tc
{

exp

[
−i
∫
c

HI (t) dt

]}
. (2b)

Since the one-direction time axis is changed to a loop with two branches, we define four
Green functions depending on the relative positions ofta and tb in the loop. These are the
time-ordered, anti-time-ordered and two distribution Green functions

i〈〈A(ta), B(tb)〉〉++ = tr{ρT [A(ta)B(tb)]} (3a)

i〈〈A(ta), B(tb)〉〉+− = ∓tr{ρ[B(tb)A(ta)]} (3b)

i〈〈A(ta), B(tb)〉〉−+ = tr{ρ[A(ta)B(tb)]} (3c)

i〈〈A(ta), B(tb)〉〉−− = tr{ρT̃ [A(ta)B(tb)]}. (3d)

The functions in equations (3b, c) are related to the conventional distribution GF by

〈〈A(ta), B(tb)〉〉< = 〈〈A(ta), B(tb)〉〉+− (4a)

〈〈A(ta), B(tb)〉〉> = 〈〈A(ta), B(tb)〉〉−+. (4b)

The well known retarded and advanced Green functions are related to the time-loop Green
functions by

〈〈A(ta), B(tb)〉〉r = 〈〈A(ta), B(tb)〉〉++ − 〈〈A(ta), B(tb)〉〉+−
= 〈〈A(ta), B(tb)〉〉−+ − 〈〈A(ta), B(tb)〉〉−− (5a)

〈〈A(ta), B(tb)〉〉a = 〈〈A(ta), B(tb)〉〉++ − 〈〈A(ta), B(tb)〉〉−+

= 〈〈A(ta), B(tb)〉〉+− − 〈〈A(ta), B(tb)〉〉−−. (5b)

It is important to note that the six Green functions are not independent. From the distribution
and retarded Green functions, all the other four can be determined.

Since the Matsubara Green function [26] is able to treat the general equilibrium behaviour,
it is not necessary to apply the time-loop technique even at finite temperatures. The time-loop
Green functions are particularly useful in dealing with nonequilibrium problems which cannot
be handled by other types of Green function. The idea that these time-loop Green functions can
be applied to deal with the nonequilibrium quantum transport phenomena was first proposed
by Keldysh [4].

Consider a system evolving under the Hamiltonian

H = H0 +H1 (6)

whereH0 describes the noninteracting system, andH1 represents interactions between all
particles in the system. Let us suppose thatH1 = 0 initially (t = −∞). This means that
the system is initially described byH0 only. Unlike the equilibrium case, this initial system
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consists of several subsystems. Each subsystem may be characterized by a given temperature
and chemical potential. Because these subsystems are not coupled to one another initially,
such chemical potential or temperature differences do not produce any current in the system.
WhenH1 is switched on adiabatically, such differences begin to drive currents in the system.
It is in this spirit, the tunnelling current through a metal–insulator–metal junction is calculated
directly [27] We remark at this point that the procedure of adiabatic switching-on is usually
sufficient in the calculation of steady state properties of the system. A more general formalism
including arbitrary initial preparation of the system is discussed in [22].

Thus the nonequilibrium GF can be expressed as

i〈〈A(ta), B(tb)〉〉 =
∞∑
n=0

(−i)n

n!

∫
c

dt1 . . .
∫
c

dtntr{ρ0Tc[AI (ta)BI (tb)H1I (t1) . . . H1I (tn)]} (7)

where the subscriptI indicates the interaction picture of the operator. Equation (7)
forms the basis for theoretical calculations on which a well known graph technique of
the perturbation method can be established. All characteristic properties of the transport
phenomena can be calculated from first principles beyond the linear response theory, and
similar perturbation procedures as in the equilibrium case can be developed to treat the many-
body effects.

On the other hand, the EOM [28, 29] has not been developed for the nonequilibrium GF
because the nonequilibrium GF cannot be completely determined by Heisenberg equations of
motion alone. The EOM method for a properly selected retarded GF [29] has been widely used
in the study of a variety of problems in equilibrium and linear response regime. By means of
the usual procedure of decoupling, the retarded GF is obtained from a hierarchy of equations
and the physical quantity under consideration can be related to the retarded GF by the spectrum
theorem. In the case of nonequilibrium systems, however, the spectrum theorem is not valid,
and it is necessary to calculate the physical quantity in question directly from the distribution
GF.

The singular behaviour that appears in the EOM for the retarded GF is usually treated
by the causality relation. The situation is, however, qualitatively different in the case of
distribution GF. Generally speaking, the singularity in the EOM for distribution GF depends
on details of the statistical behaviour of the system. Hence, different statistical ensembles
may result in different expressions for the singularity. In this work, we derive the EOM
within the framework of the Keldysh perturbation formalism. It will become clear in the final
result that the singularity defined in our formulation is consistent with the Keldysh statistical
ensemble.

3. Singularities in the EOM

Let us start with the EOM for the retarded GF

i
∂

∂t2
〈〈A(t2), B(t1)〉〉r = δ(t1− t2)〈[A(t1), B(t1)]〉 + 〈〈[A(t2),H ] | B(t1)〉〉r (8)

which is independent of the details of the statistical ensemble and can be derived directly from
the Heisenberg equation of motion. The interaction Hamiltonian represents all many-body
interactions in the many-particle system. Suppose that the general forms of operatorsA and
B are products of creation and annihilation operators. The commutator [A(t2),H0] can easily
be evaluated with the result

∑
λiεiA(t2) whereλi = +1(−1) for the annihilation (creation)

operator which is being interchanged withH0. Hence only the commutator [A(t2),H1] is
retained in the equation. We now apply the Fourier transformation to the resulting equation,
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combine the two terms involving the Green function〈〈A,B〉〉rω and then Fourier transform the
equation back. Equation (8) finally becomes

〈〈A(t2), B(t1)〉〉r = gra(t2 − t1)〈[A(t1), B(t1)]〉 +
∫

dt ′gra(t2 − t ′)〈〈[A(t ′),H1] | B(t1)〉〉r (9a)

where

gra(t2 − t1) = −iθ(t2 − t1) exp

[
−i
∑

λiεi(t2 − t1)
]

(9b)

is the retarded GF for free particles when [A,B] = 1.
In a similar fashion, we can derive the EOM for the distribution GF from Heisenberg

equation and find

i
∂

∂t2
〈〈A,B(t1)〉〉< = 〈〈[A(t2),H ] | B(t1)〉〉<. (10a)

The Fourier transform of equation (10a) is(
ω −

∑
λiεi

)
〈〈A,B〉〉<ω = 〈〈[A,H1], B〉〉<ω . (10b)

In order to find the distribution GF, we must divide (10b) by
(
ω −∑ λiεi

)
. This yields [30]

〈〈A,B〉〉<ω =
(
ω −

∑
λiεi

)−1
〈〈[A,H1], B〉〉<ω + a(ω)δ

(
ω −

∑
λiεi

)−1

. (10c)

However, both the arbitrary functiona(ω) and the integration contour of
(
ω −∑ λiεi

)−1

remain unknown. In the time-loop formalism, as we shall see, the exact expression of the
unknown functiona(ω) as well as the contour to integrate

(
ω −∑ λiεi

)−1
are determined

naturally, and the result is consistent with the initial adiabatic preparation. As a matter of fact,
it contains all the necessary statistical information on the system.

4. EOM from the time-loop formalism

We attempt to derive the EOM for the retarded GF within the framework of the Keldysh
perturbation formalism. It is expected from analytic continuation that the same procedure
produces simultaneously EOM for the nonequilibrium distribution GF and retarded GF. Let us
first define the following convention for convenience. Whenta is earlier thantb on the loop,
we haveta <c tb, and we haveta >c tb otherwise. If we assumeta >c tb in the loop, then

tr{ρ0Tc[A(ta)B(tb)H(t1) . . . H(tn)]}
= tr{ρ0[H1(t1) . . . A(ta)H1(ti) . . . B(tb)H1(tj ) . . . H1(tn)]} = tr(ρ0W) (11)

where we have definedW = H1(t1) . . . A(ta)H1(ti) . . . B(tb)H1(tj ) . . . H1(tn) for simplicity.
Equation (11) is written in the interaction picture in which we are going to develop the theory,
and hence the subscriptI is dropped from now on. We now move the operatorA(ta) to the
right within the trace by a complete cycle in order to find an equation the Green function has
to satisfy. No additional sign is introduced due to the interchange of operators in the product
even if we are dealing with fermions because the Fermi operators always appear in pairs in the
Hamiltonian. When the operatorA(ta) is moving to the right, we have

tr[ρ0W ] = tr{ρ0[H1(t1) . . . [A(ta),H1(ti)] . . . B(tb)H1(tj ) . . .

. . . H1(tn)]} + tr{ρ0[H1(t1) . . . H1(ti)A(ta) . . . B(tb)H1(tj ) . . . H1(tn)]}. (12)
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To work out the commutator [A(t0),H1], we may define, for simplicity, the operators
A(ta), B(tb) andH1(ti) as

A(ta) = α1 . . . αl e
iλ1αε1αta . . .eiλlαεlα ta = α1 . . . αlfa(ta) (13a)

B(tb) = β1 . . . βm eiλ1βε1β tb . . .eiλmβεmβ tb = β1 . . . βmfb(tb) (13b)

H(ti) = h1 . . . hp eiλ1hε1hti . . .eiλphεphti = h1 . . . hpfh(ti) (13c)

whereα, β andh represent either creation or annihilation operators. The value forλi in
the exponents is +1(−1) for the corresponding creation (annihilation) operator. From the
definitions in equations (13), it is easy to prove the commutation relation

[A(ta),H1(ti)] = C(ti)fa(ta − ti) (14a)

C(ti) = [A(ti),H1(ti)]. (14b)

Inserting equations (14) in (12), we find after moving through all the operators on the left of
B(tj )

trbρ0Wc = tr{ρ0[H1(t1) . . . C(ti) . . . B(tb)H1(tj ) . . . H1(tn)]}f (ta − ti) + · · ·
· · · + tr{ρ0[H1(t1) . . . C(tj−1)B(tb)H1(tj ) . . . H1(tn)]}f (ta − tj−1)

+tr{ρ0[H1(t1) . . . H1(tj−1)A(ta)B(tb)H1(tj ) . . . H1(tn)]}. (15)

We can choose either the commutation or anticommutation relation when the position of
operatorsA andB are interchanged, depending on the statistics of the particle. In any case,
we represent the commutator (or anticommutator) by

D = [A,B]±. (16)

Then, equation (15) becomes

tr[ρ0W ] = tr{ρ0[H1(t1) . . . C(ti) . . . B(tb)H1(tj ) . . . H1(tn)]}f (ta − ti) + · · ·
· · · + tr{ρ0[H1(t1) . . . C(tj−1)B(tb)H1(tj ) . . . H1(tn)]}f (ta − tj−1)

+tr{ρ0[H1(t1) . . . H1(tj−1)D(tb)H1(tj ) . . . H1(tn)]}f (ta − tb)
∓trρ0[H1(t1) . . . H1(tj−1)B(tb)A(ta)H1(tj ) . . . H1(tn)]. (17)

If we keep moving the operatorA to the right, we eventually reach the result

tr[ρ0W ] = tr{ρ0[H1(t1) . . . C(ti) . . . B(tb)H1(tj ) . . . H1(tn)]}f (ta − ti) + · · ·
· · · + tr{ρ0[H1(t1) . . . C(tj−1)B(tb)H1(tj ) . . . H1(tn)]}f (ta − tj−1)

+tr{ρ0[H1(t1) . . . H1(tj−1)D(tb)H1(tj ) . . . H1(tn)]}f (ta − tb)
∓tr{ρ0[H1(t1) . . . H1(tj−1)B(tb)C(tj ) . . . H1(tn)]}fq(ta − tj )
∓ · · · ∓ tr{ρ0[H1(t1) . . . H1(tj−1)B(tb)H1(tj ) . . . C(tn)]}f (ta − tn)
∓tr{ρ0[H1(t1) . . . H1(tj−1)B(tb)H1(tj ) . . . H1(tn)A(ta)]}. (18)

The last term of the above equation can be rewritten as

∓tr{A(ta)ρ0[H1(t1) . . . H1(tj−1)B(tb)H1(tj ) . . . H1(tn)]}. (19)

Since all kinds of particle in the system are initially in their own equilibrium states characterized
by different temperatures and chemical potentials, we may assume the most general case of a
grand canonical ensemble. Thus, we take the density operator

ρ0 = Z−1
0 exp

[
−
∑
i

βi(εi − µi)ni
]

(20)
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with the grand partition functionZ0 for a noninteracting system and obtain after a little algebra

A(ta)ρ0 = eλ1αβ1(ε1α−µlα) . . .eλlαβl (εlα−µlα) = Faρ0A(ta) (21a)

where we have defined

Fa = eλ1αβ1(ε1α−µlα) . . .eλlαβl (εlα−µlα). (21b)

Substituting equation (21) in (19) and moving the operatorA further to the right until it returns
to its initial position, we find finally that equation (18) becomes

tr[ρ0W ] = fa(ta − tb)
1± Fa tr{ρ0[H1(t1) . . . D(tb)H1(tj ) . . . H1(tn)]}

+
∑

tj6ctk<cti

fa(ta − tk)
1± Fa tr{ρ0[H1(t1) . . . C(tk) . . . B(tb)H1(tj ) . . . H1(tn)]}

∓
∑
tk6ctj

fa(ta − tk)
1± Fa tr{ρ0[H1(t1) . . . B(tb) . . . C(tk) . . . H1(tj ) . . . H1(tn)]}

∓
∑
tk>cti

Fafa(ta − tk)
1± Fa tr{ρ0[H1(t1) . . . C(tk) . . . B(tb)H1(tn)]}. (22a)

The second and third terms in equation(22a) can be combined into a single term by means
of the time ordering operator if we note that the only difference between them is the order of
tk relative to other times. Hence, we have

tr[ρ0W ] = fa(ta − tb)
1± Fa tr{ρ0Tc[D(tb)H1(t1) . . . H1(tn)]}

+
∑
tk6cta

fa(ta − tk)
1± Fa tr{ρ0Tc[C(tk)B(tb)H1(t1) . . . H1(tn)]}

∓
∑
ta<ctk

Fafa(ta − tk)
1± Fa tr{ρ0Tc[C(tk)B(tb)H1(t1) . . . H1(tn)]}. (22b)

It is interesting to remark that the coefficient before the trace in every term of equation(22b)
is only determined by the relative time order. Forta >c tk it is fa(ta − tk)/(1± Fa), and for
ta <c tk it is∓Fafa(ta− tk)/(1±Fa)where the upper (lower) sign is for fermions (bosons). As
a consequence, we can define formally a single particle time-loop Green function for different
relative orders oft1 andt2, namely,

iga(t2 − t1) = fa(t2 − t1)
1± Fa t2 >c t1 (23a)

iga(t2 − t1) = ∓Fafa(t2 − t1)
1± Fa t2 <c t1. (23b)

With the help of equations (4) and (5), it is a simple matter to show that equations (23) are
related to the retarded GF as given by (9b). In terms of these single-particle Green functions,
(22b) takes the form

tr[ρ0W ] = iga(ta − tb)tr{ρ0Tc[D(tb)H1(t1) . . . H1(tn)]}
+i
∑
k

ga(ta − tb)tr{ρ0Tc[C(tk)B(tb)H1(t1) . . . H1(tn)]}. (24)

Note thatta andtb are fixed buttk is variable.
Inserting equation (24) into equation (7) we find that the time-ordered integral overt1 . . . t2

in the first term can be carried out and the result is simply the time-average ofD(ta), namely,
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the first term yields iga(ta − tb)〈D(tb)〉. The second term is more complicated. It is evaluated
as follows.
∞∑
n=1

(−i)n

n!

∑
k

∫
c

dt1 . . .
∫
c

dtk . . .
∫
c

dtn[iga(ta − tk)]tr{ρ0Tc[C(tk)B(tb)H1(t1) . . . H1(tn)]}

=
∞∑
n=1

(−i)n

n!

∑
k

∫
c

dtk iga(ta − tk)]
∫
c

dt1 . . .
∫
c

dtk−1

∫
c

dtk+1 . . .

. . .

∫
c

dtntr{ρ0Tc[C(tk)B(tb)H1(t1) . . . H1(tn)]}

=
∞∑
n=1

(−i)n

n!
n

∫
dt [iga(ta − t)]

∫
c

dt1 . . .

. . .

∫
c

dtn−1tr{ρ0Tc[C(t)B(tb)H1(t1) . . . H1(tn−1)]}

= i
∫
c

dtga(ta − t)
∞∑
n=1

(−i)n

(n− 1)!
(−i)

∫
c

dt1 . . .

. . .

∫
c

dtn−1 tr{ρ0Tc[C(t)B(tb)H1(t1) . . . H1(tn−1)]}

= i
∫
c

dtga(ta − t)〈〈C(t) | B(tb)〉〉 (25)

where we have made use of the fact that the integration of the trace over time variablest1 . . . tn
is the same for anyk and hence the sum overk results inn integrals of (n− 1) independentt
variables. In the last step of equation (25), we have converted the equation from the interaction
picture to the Heisenberg picture. With equation (25), we have finally

〈〈A(ta), B(tb)〉〉 = ga(ta − tb)〈D(tb)〉 +
∫
C

dtga(ta − t)〈〈C(t)|, B(tb)〉. (26)

This is the EOM in the Heisenberg picture for the nonequilibrium GF, which incorporates
statistical information in quantum mechanics. It differs from the usual Dyson equation in that
it provides a general equation, independent of specific form of the Hamiltonian.

Following the Langreth theorem [31], we can change the integration over the loop in
equation (26) to integration along the real time axis. This yields

〈〈A(ta), B(tb)〉〉r = gra(ta − tb)〈[A(ta), B(tb)]±〉
+
∫

dtgra(ta − t)〈〈[A(t),H1(t)], B(tb)〉〉r (27a)

〈〈A(ta), B(tb)〉〉< = g<a (ta − tb)〈[A(ta), B(tb)]±〉
+
∫

dtgra(ta − t)〈〈[A(t),H1(t)], B(tb)〉〉<

+
∫

dtg<a (ta − t)〈〈[A(t),H1(t)], B(t − b)〉〉a. (27b)

Before we discuss the physical meaning of equation (27b) and the graphical representation
of perturbation theory, it is important to point out that we are dealing with many-particle Green
functions here. An example of a two-particle GF and its graphic calculation can be found in the
discussion of electrical conductivity of a metal in the presence of many impurities [32]. Each
creation (annihilation) operator inA(ta) andB(tb) corresponds to a particle leaving (ending)
the vertex atta andtb, respectively. These particle and hole lines may exchange momentum at
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any time during the intervaltb− ta because of the particle–particle interactions. The first term
on the right-hand side of equation (27b) is the interaction-free contribution. The interaction
part splits into two terms as we are dealing with time-loop GFs. In general, the integrands
are products of a free-particle GF and a many-particle GF. This is understood as follows. The
particle evolves freely fromta until t when scattering occurs, and the resulting new Green
function continues to develop until timetb. The time variablet in the integrand may be in
either the upper or the lower branch of the time loop, and the corresponding Green functions as
defined in equation (3) can then be transformed into retarded and distribution Green functions.
Hence the interaction leads to the last two terms in (27b). The integration over time includes
all possible scattering paths. It is emphasized that the calculation of (27b) can be carried out
directly without further approximation, and hence it is expected to yield new results. As a
matter of fact, we have found the surprising inversion of the electron population in photon-
assisted tunnelling through quantum wires and that the rotating-wave approximation is invalid
when the quasi-particle transition is at resonance with incident light [33].

In the case of steady states, the Green functions depend only on the variablet = ta − tb,
which is changed toω by a Fourier transform. Thus, we have

〈〈A,B〉〉rω = gra(ω)〈[A,B]±〉 + gra(ω)〈〈[A,H1], B〉〉rω (28a)

〈〈A,B〉〉<ω = g<a (ω)〈[A,B]±〉 + gra(ω)〈〈[A,H1], B〉〉<ω + g<a (ω)〈〈[A,H1], B〉〉aω. (28b)

Equation (28a) is just the Fourier transform of (9a), the EOM for the retarded GF, which can be
found directly from the Heisenberg equation. Equation (28b) is the EOM for the distribution
GF in which the singularity has already been expressed in the single-particle Green function
g<a (ω) andgra(ω), and can be used directly for theoretical calculations. With the explicit form
of theg, equation (28b) can be rewritten as

〈〈A,B〉〉<ω =
〈〈[A,H1], B〉〉<ω
ω −∑ λiεi + iη

+ 2π iPδ
(
ω −

∑
λiεi

)
〈[A,B]±〉

+2π iPδ
(
ω −

∑
λiεi

)
〈〈[A,H1], B〉〉aω (29)

whereP = ±Fa/(1 ± Fa). By comparing equation (29) with equation (10c) we see that
the last two terms correspond to the arbitrary functiona(ω) which indeed involves all the
statistical information and cannot be obtained from the Heisenberg EOM alone. Besides, a
positive imaginary part is added inω −∑ λoεi + iη which fixes the original singularity.

The single-particle Green functiong<(ω) = 2π iPδ
(
ω −∑ λiεi

)
describes the initial

statistical condition of the system. If it is possible to separate a term of the form iγ 〈〈A,B〉〉ω
from the distribution GF〈〈[A,H1], B〉〉, equation (29) can be rewritten as

〈〈A,B〉〉<ω =
2π if

(∑
λiεi

) (
ω −∑ λiωi

)
δ
(
ω −∑ λiωi

)
[〈[A,B]±〉 + 〈〈[A,H1], B〉〉aω]

ω −∑ λεi + iγi
+other terms from〈〈[A,H1], B〉〉<ω . (30)

The fact that the first term on the right vanishes justifies the usual phenomenological procedure
in which a decay parameterγ is introduced instead of dealing with the singularity. This
separation is always possible when the system is assumed to interact with an external reservoir.
However, one then has to make further assumptions about the distribution function to decouple
the reservoir which is valid only in the quasi-equilibrium approximation, or one still has to deal
with a singularity in the EOM for the reservoir. On the other hand, the exact expression for
the singularity is known in equation (29) which can then be employed for direct calculations
without any phenomenological assumption.

This argument applies also to the transport problem in a mesoscopic system. The initial
condition of the quasi-bound electrons is described by the first term of equation (30) and does
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not contribute to the Green function. Hence the steady state solution is independent of the
initial distribution of the quasi-bound electrons in the system. The same conclusion has been
reached in the graphic analysis of the Green function [15].

5. Discussion and conclusion

We have seen that the EOM method is a powerful tool for the calculation of retarded GF for
both the equilibrium and nonequilibrium systems. To find the distribution GF, however, the
usual EOM approach from the Heisenberg equation yields undetermined singular terms. This
does not cause any difficulty in the equilibrium case because the spectrum theorem can be
applied to obtain the results. In the case of nonequilibrium problems, the traditional approach
to avoid difficulties due to these singular terms is to introduce phenomenologically a decay
parameter and then allow the system to interact with an external reservoir, which is valid only
in the quasi-equilibrium approximation.

On the basis of the Schwinger–Keldysh perturbation formalism, both the nonequilibrium
retarded GF and distribution GF follow simultaneously from the equation of motion approach.
We have also derived the exact form of the singular terms and hence it is no longer necessary to
introduce any parameter phenomenologically. It is different from the Dyson equation because
it leads to a general equation that is independent of specific Hamiltonian. The procedure of
calculation may be briefly outlined as follows. We first divide the system under consideration
into parts with which different sets of statistical properties as the chemical potential and
temperature can be associated. We then choose the Green function appropriate to the physical
quantity in question. The difference from the equilibrium case is that we have to solve for
distribution GF which involves the statistical information as well. In practice, a truncation
procedure is required to achieve self-consistency. Thus the EOM method is more suitable
for handling complicated problems for which the graphic method becomes impractical. The
nonequilibrium GFs derived in this article are being employed to investigate quantum transport
problems in mesoscopic structures with the presence of many-particle interactions as well as
time-dependent external fields. Further studies of intersubband transitions in the photon-
assisted tunnelling through a quantum well will be reported elsewhere in the near future.
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